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The general results regarding the symmetry of density matrices constructed from wave functions 
of a given symmetry species and the consequences for the transformation properties of the natural 
p-states reviewed in a previous communication [1] are illustrated for the special case p = 1 for linear 
molecules with C~v- or D~oh-symmetry. It is shown that even if the wave function belongs to a de- 
generate species, the natural orbitals (NO's) can always choosen to be adapted to the effective symmetry 
group C o. The role played by the symmetry-adapted natural orbitals (SANO's) and of the "natural 
expansion" for 2-electron wave functions in this case is discussed. 

Die in einer frfiheren Arbeit [1] zusammengestellten Ergebnisse fiber das Symmetrieverhalten 
reduzierter Dichtematrizen, die aus Wellenfunktionen bestimmter Symmetrie konstruiert sind, sowie 
die Transformationseigenschaften der ,,natfirlichen p-Zust~inde" werden am Beispiel von linearen 
Molekfilen mit C~v- oder D~h-Symmetrie ffir den Fall p = 1 illustriert. Es wird gezeigt, dab auch 
dann, wenn die Wellenfunktion zu einer entarteten Symmetriespecies geh6rt, die natfirlichen Orbitale 
(NO's) der effectiven Symmetriegruppe Coo adaptiert sind.Die Rolle, die in diesem Fall die symmetrie- 
adaptierten natfirtichen Orbitale (SANO's) und die ,,natfirliche Entwicklung" von 2-Elektronen- 
wellenfunktionen spielen, werden diskutiert. 

Les r6sultats g6n6raux recens6s dans une communication pr6c6dente [1] concernant la sym6trie 
des matrices densitbs construites/t partir de fonctions d'onde de sym6trie donn6e et ses cons6quences 
sur les propri6t6s de transformation des 6tats -p naturels, sont illustr6s sur le cas sp6cial off p = 1 dans 
les mol6cules lin6aires/t sym6trie C~v ou D~h. On montre que m6me si la fonction d'onde appartient 
/ tune  cat6gorie d6g6n6r6e, les orbitales naturelles (NO's) peuvent toujours 6tre choisies pour ~tre 
adapt6es au groupe de sym6trie effectif C~. On discute le r61e jou6 par les orbitales naturelles adapt6es 
~t la sym6trie (SANO's) et 'Texpansion naturelle" des fonctions d'onde ~t deux 61ectrons. 

1. Introduction 

Starting with two sets o f -  exact or approximate - w a v e  functions 
~ i  (i = 1, 2 ... d~) and ~ j  ( /= 1, 2 . . .  d~) which respectively span the irreducible 
representations F (~) and F @ of the symmetry group of the system under con- 
sideration, the pth order transition density matrix in the normalization of Cole- 
man [2] is defined by 

(p) , , , D~i, ~j(x, x ) =  ~ T~i(x, y)q~pj(x, y)dy (1) 

where x and x' stand for two different sets of values of the spatial and spin vari- 
ables of the first p particles and y for the remaining (N - p) ones. If we put x' = x 
we get the corresponding p-densities. 
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As was shown by Coleman [2] and others, the ua " cp , q ntlty D~i,~(x,x ) for fixed 
p, c~, and i can be considered as the kernel of a density operator D. Its eigen- 
functions, defined by 

6)~i(x ) = ~. D(x, x') Zi(x')dx'  = laiZi(x ) (2) 

are called "natural p-states" with corresponding eigenvalues #i 1. Since/)  {p) is a 
completely continuous operator - by virtue of the normalization of the wave 
function - its spectrum is purely discrete and its eigenfunctions Zz - including 
those with eigenvalue # = 0 - span the whole function space. 

One of the problems in connection with these density matrices is their 
behaviour under the symmetry operations of the system and the consequences 
this has for its eigenfunctions; assuming that the wave functions used in con- 
structing the density matrix are themselves symmetry-adapted (cf. Eq, (1) and 
preceeding text). This subject, both for density matrices and p-densities, was 
reviewed in a recent article by the present author and W. Kutzelnigg [1]. However, 
it seemed desirable to exemplify the general results collected in that paper for a 
specific symmetry group. This is done in the present paper for the groups C~ov 
and Dooh, which include the whole class of diatomic and linear polyatomic mole- 
cules. 

2. General Results for the Symmetry Properties of Density Matrices 
and Natural p-States 

In this section we will quote from [11 without proof those general results 
needed for the applications in the following sections. 

1. If a symmetry operation R of (5 is applied simultaneously to both sets of 
arguments x and x', the d~d, transition densities of Eq. (1) are transformed among 
themselves and span the direct product representation F C~) •  @*. If this re- 
presentation is reducible, it can be reduced to give the decomposition 

F ~) x F @ * =  ~ n>.F ~) (3) 
? 

into irreducible parts. The transition density matrices can be likewise decomposed 
ny 

D~f!p;(x, x ' )=  ~ ~ D~!,(x,  x') C(o~ifljlykr) (4) 
?,k r = l  

into their irreducible components of species ? and subspecies k. The vector- 
coupling coefficients C are uniquely defined only if the n~ are all either 0 or 1. 
Otherwise the index r is needed to count the different irreducible components 
of the same species. Since the C-coefficients are unitary, Eq. (4) can be inverted 
to give the composition of the irreducible components 

D~),r(x, x') = ~ D~f)pj(x, x') C*(~ifijl  ykr) . (5) 
t , J  

2. In general the group {5 will contain both spatial and spin symmetry 
operations. It is possible to treat these two symmetries separately. The way in 
which this can be done has been investigated in detail for the first- and second- 

1 They have been considered so far for density matrices only (i.e. if ~y- ~b~i ) and not for transition 
density matrices. 
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order density matrices (p = 1 and 2 in Eq. (1)). Here we need only the result, 
that for wave functions which are pure spin states (i.e. for which S and Ms are 
good quantum numbers), the spin dependence of D(1)(x, x') can be separated off, 
leaving two spinfree quantities the spinfree first-order density matrix P(r, r') and 
the spin-density matrix Qs(r, r'). 

P(r, r') = N S D(1)( rs, r' s)ds (6) 

Qs(r, r') = X ~ [SzD(1)(rs, r's')],, =sds. (7) 

Both quantities depend only on the spatial coordinates of particle 1. The whole 
argument of the previous section can be repeated, leading to the conclusion that 
both P and Qs can be decomposed into irreducible components of the spatial 
symmetry group (5 according to Eqs. (3) to (5)2. Furthermore, the decomposition 
(3) is the same for P and Qs- 

3. The eigenvalue Eq. (2) can likewise be separated into a spatial and a spin 
part. For p =  1 the natural 1-states were first introduced by L6wdin [3], who 
called them natural spin-orbitals (NSO's). Under the assumptions of Sect. 2 
each NSO is the product of a spatial part times an ~- or fl-spinfunction. Further- 
more for states 3 with M s = 0 the spatial part of every NSO is identical with a 
natural orbital (NO). These NO's qo~ are the eigenfunctions of the spinfree density 
matrix P, i.e. we have (cf. Eq. (2)) 

/~o~(r) = I p( r ,  r') ~0,(r')dr' = ;~,~o~(r). (8) 

Thus every NO ~0 i gives rise to two NSO's (pic~ and (p~fl both of which have the 
same eigenvalue (which is also called the "occupation number")/*i = 2iN.  The 
spin density matrix Qs vanishes identically for this case. 

4. It remains only to discuss under what conditions the NO's (and the spatial 
parts of the NSO's) can be classified according to irreducible representations of 
the spatial symmetry group 15. 

If the wave function of the system belongs to a 1-dimensional representation F 
of 15 (which need not be the totally-symmetric one), D(1)(x, x') transforms like 
the totally-symmetric representation F (~ of 15 (since for this case F x F* = F (~ 
cf. Sect. 2.1). The density operator /) ~ therefore has the full symmetry of the 
spatial group 15 and the spatial parts of the NSO's transform like one of the irred. 
repr. of 15. If that representation is multidimensional, those NSO's that are 
partners for this representation have the same occupation number. The same 
statements hold for the NO's. 

If the wave function belongs to a degenerate representation F {~), the d 2 quantities 
D~(I]~s transform according to F (=) xF  (~)*. This reducible representation (cf. Eq. (3)) 
contains the totally-symmetric one F (~ exactly once (n o = 1). The decomposition (4) 
can in this case be shown to have the form ~ 

(1) /')(1) f-,. D~i, ~i(x, x') = x') + (9a) ~00~.~, ... , 

D(~l)~s(x, x') = 0 + . . .  (i va j) . (9b) 
2 Instead of (x; x') the a rgument  is now the pair of spatial coordinates (r, r).  
3 For  systems with an even number  of particles we can always choose the state to have M s = O, 

whatever the value of S may  be. 
4 To simplify the discussion we now assume that the group (5 is simply reducible, i.e. that all n~ 

in Eq. (3) are either 0 or 1. Then  the index r in Eqs. (4) and (5) can be omitted. 

23* 
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In other words, while the totally-symmetric component ~oo"(1) occurs in the diagonal 
elements i= j  only, the nontotally-symmetric contributions D~ ), indicated by dots 
in Eqs. (9a, b) contribute to both the diagonal and nondiagonal transition 
density matrices. None of them is therefore purely totally-symmetric and we 
cannot expect to get NSO's which are symmetry-adapted, i.e. which belong solely 
to an irred, repr. of (5. The same situation obtains for the spinfree quantities 
P~i,~ (r, r') and the NO's q)i(r). 

5. There are two ways out of this dilemma. Either one chooses the highest 
possible subgroup (5' of (5 with respect to which all wave functions T~ (e fixed, 
i = 1, 2 ... d,) belong to one-dimensional representations. The spatial parts of the 
NSO's and the NO's are then symmetry-adapted to irred, repr. of this "effective" 
symmetry group (5'. 

On the other hand one can use the totally-symmetric part/)o(lo) of D (1) or P 
for the construction of natural orbitals. These SANO's, as they are called, are 
then symmetry-adapted to the full symmetry group (5. The connection between 
the SANO's and the NO's is however not a simple one in the general case (see 
Sect. 4.2). 

3. The First-Order-Density Matrix for Linear Molecules 

To simplify the discussion we will make the assumption, that the wave func- 
tions used describe a pure spin state with Ms = 0. We then need only consider 
the spinfree density matrix P and its eigenfunctions, the NO's. 

The spatial symmetry group is either C~v or D~h. Now D~h= C~v • since 
the inversion operation i commutes with all elements of C~ .  It is therefore 
sufficient to consider the group C ~  only; the results obtained can be trivially 
extended to linear molecules having a center of inversion. 

The irred, repr. of C ~  are collected in the following table of characters. 
If the wave function ~v transforms like X + or X-, then according to sect. 2.4 

P(r, r') transforms according to the totally-symmetric representation X § 
As an illustration for one of the twofold-degenerate representations of the 

Table let us consider a H-state. There are now two wave functions, say ~v+ and ~ v ,  
for the same energy, which are transformed into each other on application of 
the reflection ~r~ '~ in the x, z-plane 

a~z~P + = ~_ ,  ax~ _--71+. (10) 

Table.  Character table of the group Co~v 

Irr. repr. E Ce, C_ ~ co ~r v 

X + 1 1 1 
X-  1 1 - 1  
H 2 2 cos q~ 0 

A 2 2 c o s A p  0 
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If we introduce cylindrical coordinates (0i, 0~, z~ for all electrons, then 

7'+(rl ... rN) = ei~iF(Q, zl ,  (o2 - (olOzz2, ... (ou - (oIQNz~) ( l la)  

and from (7) 

~ - ( r l  --. rN) ~- e-i~~ q)l - -  (P202Z2 . . . .  OPt - -  ( P N O N Z N )  " ( l lb)  

Since d~ = 2, there are now 22 = 4 density matrices. For P+ + Eqs. (1), (6) and (11 a) 
give s 

P+ + = e i(<~ ~ ~ F(oi  zl ,  ~P202 z2, ...) F*(Q; z i, ~p~ + ((oi - (el) 42 zz ...) d r2 ... d r  N 

where the relative angles ~Pi = (og- (Pl have been introduced. P+ + is therefore of 
the general form 

p+ + (rl , r,1) = ei(~1-q,i) f ((ol -- (o'l ; O1 zl O~ z ' j  . (12a) 

In the same way one obtains 

P -  - ( r i ,  r l ) =  e- i (~  f ( - ( ~ o i  - (Pl); 01z olzi) (12b) 

and for the two transition density matrices 

p+ _ (rt, rl ) = e,(e, + el) g(~01 _ (el ; 01 z101 z i ) ,  (12c) 

P-  +(rt, rl) = e- i (~176176 - (el); 01 zlelzl )  (12d) 

with a different function g. 
These four P's transform as /7  xH*  and Eq. (3) gives 

/7 x/7* = S + + ~ -  + A. (13) 

It can easily seen from Eqs. (12) that P§ _ and P_ + together span the A-component 
of (13). P+ + and P__ are invariant against a rotation C e as applied to both (oi 
and (o[ but transform into each other for the reflection cr[ ~. They do not yet 
belong to one of the irreducible representations of Coo~ as given in the Table. 
Each linear combination 

P,+ =.-}(P+ + + P__), P~- =�89 + - P _ _ )  

is however transformed into itself and gives the remaining irreducible components 
of (13). Alltogether we have 

P++ =(Ps+ + Px-), P - -  =(P~+ - P z - ) ,  P + -  = P z ,  P - +  = P z  (14) 

which illustrates the general decomposition of Eqs, (9a, b). These results can be 
modified if the wave function belongs to one of the other degenerate irr. reprs. 
"A "  of the Table. The transition densities P+_ and P_+ now span the irr. repr. 
"2A" and a factor A occurs in all exponentials of Eqs. (11) and (t2). The extension 
to D~-symmetry is trivial. The wave function belongs either to F 0 or F, with 

s The + and - signs now take the place of the indices i,j, k in our previous equations which 
number the different subspecies. 
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respect to the inversion group Ci. Because of 

ro • ro= r. • r .=  

the density matrix always belongs to F o. All irreducible components in Eqs. (13) 
and (14) are therefore of g-species. 

4. Symmetry Properties of the NO's of Linear Molecules 

1. The wave function belongs to a 1-dimensional representation. 
For linear molecules this is the case for a wave function of Z +- or Z--species. 

According to Sect. 2.4 the spinfree density matrix then belongs to the totally- 
symmetry representation Z § The NO's are therefore symmetry-adapted to the 
full group Co~v, and can be classified as being of or-, 7r-, 5-type 6. a-NO's are non- 
degenerate and real, whereas r~-, 5-NO's are 2-fold degenerate, i.e. there are two 
NO's cpi and ~p* with the same occupation number 2/. 

Now any first-order density matrix can be expanded in terms of its eigen- 
functions 

P(r, r')= ~ 2i~oi(r ) q~i(r')*. (15) 

For the special case now considered this expansion can be split into sums over 
NO's of the same symmetry species 

P(r, r') = ~" ~iai(r) ai(r')* + ~, flj(~zi(r) 7~j(r')* + 7rj(r)* ~zj(r')) + . . . .  (16) 

2. The wave function belongs to a degenerate representation. 
Let us again consider as an example the case of a wave function for a H-state. 

One would normally calculate the NO's from either one of the diagonal density 
matrices P+ + or P__.  However, as we have seen, neither of them is by itself 
totally symmetric. The two procedures described in Sect. 2.5 lead to the following 
result. 

If we reduce the symmetry from C~v to the effective symmetry group Coo 
(which has no mirror planes) the degenerate representation H of C ~  splits to 
give two different onedimensional repr. H + and H -  of C o ; and the wave functions 
~+ and ~_  belong to H + and H -  respectively. The two irr. repr. Z + and Z -  
of C ~  coincide to give the totally-symmetric repr. Z of Coo. Instead of Eq. (13) 
we now have 

H +x (H+) * = H - x  ( H - ) * = Z ,  

We can therefore use either P+ + or P__ to get NO's which can be classified as 
being of 0--, ~ +-, ~-  etc. type. 

The other procedure is to use the totally-symmetric part Px+ to obtain the 
symmetry-adapted natural orbitals (SANO's) mentioned before. 

There is an interesting relation between the NO's and their occupation 
numbers obtained in these two different ways (see however the end of the Sect. 2), 
which can be derived as follows. Let q~+ be an NO of D+ + with occupation 

6 Here a stands for a + ; there can be no 1-particle functions of Z--species. 
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: Z Z 

A_ o 1 I 1 l , 

P~+ o I ',l I , 

Fig. 1. Occupation number  spectrum of P+ +, P_ _ and P~. for a linear molecule in a/-/-state 

number  2i + 
fi+ + ~o + = s go/+. (17) 

Then (0% stands for the special mirror  plane o-~ z of Eq. (10)) 

or ( f+  + ~o?) -- ( a v A  + ~ 1)(~o~o,*) = &+ (av~0?) �9 

N ow compar ison of Eqs.(12a) and (12b) shows that ( % / ; + + ~ ; - 1 ) = ( f _ _ ) .  
Therefore  

A - = &+ (ave/+). (is) 

We therefore have following relationship: 
If go~((p, ff, z) is an N O  of P++ with occupat ion number  2+, then 

~vg0i = ~01(-~o, $, z) is an N O  of P__  with the same occupat ion number  and 
vice versa. 

This means that  the (r-NO's (for which o-alp = ~o) of P+ +, P_ _ and also the 
o--SANO's of Px+ are identical with the same occupat ion number.  For  every 
rc+-NO rcj of P+ +, a v % =  ~* is a r : - - N O  of P__  with the same occupat ion 
number  and for every re--NO, r6* of P+ + there exists an N O  o%7:~* = rc~ of P_ _ 
of rc+-type, which has the same occupat ion number.  These relations are illustrated 
in the occupat ion number  spectrum of Fig. 1. 

There does not  seem to be any such simple connect ion between the SANO's 
of 7:-, ... type and the 7c +-, ~ - - . . .  NO's  of P++ (or P__)  for the following rather  
subtle reason. For  P+ + (r, r') the expansion (15) takes the form 

P+ +(r, r ' ) =  ~" ~,a~(r) ai(r')* + K fljrc~(r) uj(r')* + E ?k~'k(r)* ~'k(r')+ "'" (19) 

in which the sum (15) over NO's  has been split into sums over NO's  of the same 
symmetry species of Coo. Now different NO's  are orthogonal ,  since P+ + is a 
hermit ian operator .  In part icular  we have 

(~:,., re.) = (re;,, ~z') = 6 . . . .  (20a) 

(Trj, u~,*) = O, all j, k ,  (20b) 
but in general 

(uj, u~) ~ 0.  (20c) 

Using the relation between the NO's  of P+ + and P_ _ we can get the NO-expans ion  
of P_ _ directly f rom Eq. (19) 

P_ _ (r, r') = ~.  ajar(r) ~ri(r')* + ~,  fljrcj(r)* ~j(r') 
(21) 

+ E + . . .  
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and from (14), (19), and (21) 

Pz+ (r, r') = ~ ~io'i(r) ai(r')* + ~ f l /2  [~(r) 7rj(r')* + ~(r)* ~j(r')] 
J (22) 

+ ~Tk/2[~zk(r) . . . .  , , , , , ' ~zkt r)  +~Zk(r) rck(r)] + . . . .  
k 

If this expansion would be of the form (15) with orthogonal ~oi, we could then 
simply read off the eigenfunctions of Px+ (i.e. the SANO's) and their occupation 
numbers. Now each ai is orthogonal to all other orbitals in (22) and is therefore 
a SANO as well as an NO of both P+ + and P_ _. The rc-orbitals in the second 
sum are orthogonal among themselves as are the ~'-orbitals of the third sum 
(cf. Eq. (20a)) but a rcj need not be orthogonal to any of the r@orbitals (cf. Eq. (20c)). 
In order to get the + component of a ~-SANO from (22), we first have to solve 
a certain secular equation resulting in a mixture 

rc = ~ aj rc i + ~. b k 7Z i . (23 a) 

The - component is then given by the conjugate complex expression 

* * (23b) 7c* Z a j  rcj + ~ I,*~'* C'k ~k " 

Both ~ and re* have the same eigenvalue, which can be determined from the 
secular equation together with the coefficients aj and bk. 

We have seen, that for molecules of D~oh-symmetry the density matrix is 
always of the species F o. It therefore has the full symmetry of the group C~ and 
the NO's are symmetry-adapted, i.e. they are either g or u. 

5. The NO's and the Natural Expansion of the Wave Function 
for 2-Electron Molecules 

For 2-electron systems the spatial part of the wave function must be either 
symmetric (for S = 0) or antisymmetric (for S = 1) against interchange of the two 
electrons. This can lead to degeneracies of the occupation numbers in addition 
to those resulting from the symmetry species of the NO's (cf. Eqs. (16, 19, 21 and 22)). 

1. The wave function belongs to a 1-dimensional representation. 
For a general 2N-electron wave function the density matrix is then given by 

Eq. (16). For a 2-electron wave function we get different results for the subcases 
1 + 3 + 1 + Zo, Zo, Zu . . . .  To see how this comes about, we consider the "natural expan- 
sion", i.e. the expansion of the wave function into configurations built from its 
own NO's. 

1Z~_species: Here the natural expansion is of the form 

~/Y(rl, r2)  = 2 eiq~i(rl) (p i ( r2)*  ( 2 4 a )  
i 

= ~, aiai(rl) o-i(r2)* + ~ bj(~zj(rl) ~zj(r2)* + ~z~(rl)* ~zj(r2)) + ' "  (24b) 

which, with the use of Eqs. (1) and (6) leads to the general expansions (15) (with 
21 = 2c/2) and (16) (with ~i = 2a~, fl~ = 2b 2, ...) of the density matrix P. In this case 
there are no additional degeneracies. 

3Zo+_species: Here the natural expansion must reflect the required anti- 
symmetric behaviour against interchange of particle numbers. As was shown by 
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L6wdin and Shull [4], instead of (24) we now have 

~[t(rl. r2)  ~-- Z c i ( u i ( y l ) / ) i ( r 2 ) *  - / ) i ( r l ) *  u i ( y2 ) )  (25a) 

where all orbitals u~, vj are mutually orthogonal. Furthermore u~ and v~ belong 
to the same symmetry subspecies 7 of D~h. Written in detail, Eq. (25a) takes the 
form 

t i t ,  , t t , \  
= ~ .  ai(f f la i --  ai~ri) + ~ ba(~z~=}*- n~ na + =j n j -  =~rcj ~ + . . .  (25b) 

where from now on we omit the arguments r 1, r 2 which always occur in the 
order rl, r 2 reading from left to right. The density matrix for this wave function 
is (the order of the arguments being r, r') 

P Y. a i ( ~ i a * +  ' , ,  -e njrcj -e rcj re j) + ... (26) 

with 2-fold degenerate occupation numbers e~ = 2a 2 for the a-NO's and 4-fold 
degenerate ones f i j =  2b  2 for the re- and other NO's. Comparison with Eq. (16) 
shows an overall doubling of the degeneracy. 

1Z,+-species: The same doubling occurs also for this case, although for a 
different reason. The natural expansion must reflect the required antisymmetric 
behaviour against inversion; at the same time it must be invariant against 
interchange of the two particles. These requirements lead to a natural expansion 
of the form 

7* = 2 ci(uiv* + v*ui) (27a) 

with mutually orthogonal NO's u~ and vj. Now the pair u~, v~ belongs to the 
same symmetry subspecies of C~ov, but they are of opposite parity. Written in 
detail, Eq. (27a) reads 

~P = Y. ai(aioai, + ai,,aio ) + Y. bj(z jon* u + * * * ... (27b) TCjuTr, jg -~ T~jgT~ju "+- 7"CjuTCjo ) "~- . 

The density matrix is then given by Eq. (26) if we substitute 

~i--) 'O'ig, {7r 7"fi---~Tfio , rCti---*~iu. (28) 

aZ+-species: This case is just like a22 + except that u~ and its partner v~ are of 
opposite parity. The expansions of the wave function and the density matrix are 
obtained from (25b) and (26) by making the substitution (28). 

127~--species: The doubling of the degeneracy occurs again, because the wave 
function must be antisymmetric against reflection in a plane containing the 
internuclear axis and at the same time be invariant against exchange of the two 
particles. These requirements lead to the natural expansion (27a) with u~ and v~ 
belonging to the same subspecies of Dc~ h. 

Written out in detail we have 

r ,  , t t , 7 j = ~ bj {rcjn)* + nj nj - nj rcj - rcjrcj } + . - . .  (29) 

There are no a-NO's (see below). The density matrix expansion is given by 
Eq. (26) with fij = 2 b } and c~j = 0. 

This is the reason for using the particular form of (25a), which differs somewhat from Ref. [4]. 
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1S2-species: The same as 12J~- but ui and vi of opposite parity. The wave 
function and the density matrix are obtained from (29) and (26) by omitting all 
o--NO's and making the substitution (28). 

3S~--species: This is the only case other than tSo +, where no additional 
degeneracies arise, because the simple expansion (24a) is compatible with both 
requirements, that kg be antisymmetric against reflection and symmetric against 
particle interchange. Written in detail, the natural expansion takes the form 

7 j = ~ * * (30) b: {rcjrcj - rc~ re:} + ... 

and the density matrix is given by Eq. (16) with c~ = 0, flj = 2b 2. 
3Nu-Species: The symmetry requirements are the same as for 3So-states, 

except that the wave function must be antisymmetric against inversion. This 
additional requirement cannot be met by the natural expansion (30), and we 
must use Eq. (25a). The detailed form of the natural expansion for this case 
turns out to be 

= Z r c j * r c j  * ' ' * - rcj rci + rcJrcJ } + ' "  (31) 

with the density matrix expansion given by Eq. (26) with c~j = 0, flj = 2 b~. 
+ and To summarize our results: All states other than those of Sg- 32;~-- 

species of a 2-electron linear molecule have the degeneracies of the occupation 
numbers of their NO's doubled as compared to the general case of a 2N-electron 
linear molecule. Furthermore X--states of either multiplicity or parity have no 
a-NO's. These results could have been anticipated from the fact, that only these 
two states can be obtained from configurations (n)2, (6)2... of two equ iva len t  
electrons, and that no N--states result from 2-electron configuration with either 
equivalent (a 2) or nonequivalent (o-a') a-electrons. 

2. The wave function belongs to a degenerate representation. 
It will be sufficient to consider the example of a //-state, since states with 

A = 2, 3 ... behave in exactly the same way. Using the conclusions at the end of 
the preceeding subsection as a guide, we expect a doubling of the degeneracy of 
the NO's of P+ + or P__ for both singlet- or triplet-wave functions of either 
parity. The reason is, that a / / - s t a te  can be obtained only from configurations 
with 2 i nequ iva len t  electrons like arc, n6 ... The natural expansion therefore must 
be of the general form (25a) for triplets or (27a) for singlets. Written out in detail 
we get for the M L = - 1 component 

7 ' -  = Y .  ai(a~rc* +- n* ai) + 2 bj(rcjg)* -t- ~j nj) + .. .  (32a) 

where the upper (lower) sign is for singlet-(triplet-) states. For a / /o( / / , )  state both 
functions of a pair u i, v i are of the same (of opposite) parity. The other component 
~+ can be obtained from (32) according to Eq (10) 

i ,  p, 
tIl+ = Z ai(airci -Jr- rciai) + Z b~(rc~ fir + 6JrcJ ) + """  (32b) 

The density matrix for the wave function (32) is given by 8 

P_ _ = E 2la~lZ(aia* + rc*n~) + Y~ 21 bjl2(rcjrc~' '* + 6"@ + ... . (33) 

8 Note that there are no cross terms between a~zc* and fin) of(32) because n~ and n)* are orthogonal 
by reason of symmetry (cf. Eq. (20b)). 
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A comparison with the general form of P__ given in Eq. (21) shows the following: 
In agreement with the general results obtained in Sect. 4.2, the NO's of P_ _ are 
symmetry-adapted to the effective group Coo; i.e. they are of the species G, =+; 
n - , a§  ... However we have a degeneracy not present in Eq.(21), since each 
a-NO is paired with a n - -NO;  each rc+-NO with a a--NO etc. 

Taking the conjugate complex of Eq.(33) gives the expansion for 
P+ + (cf. Eq. (20)) 

P+ + -- ~ 21a~ f(o-,a* + n~n*) + Y. 21bj12(n)* re)+ a,a*) + . . .  (34) 

and half of the sum of Eqs. (33) and (34) gives the totally symmetric component 
of the transition density matrices for a//-state 

Pr+ = ~. l a, 12(2GiG * + =*rci + =i n*) (35) 

+ Y. 21 bi [ z(n) 7c)* + =5" =j + a* a~ + aja*) + . . . .  

We first note that the difficulty mentioned in Sect. 4.2 arising from the non- 
orthogonality of the nc and n)-orbitals (cf. Eq. (20c)) is also present here. A 
comparison of Eqs. (22) and (34) leads to the following differences: In the general 
case o'-SANO's are nondegenerate, n-, a-.. .  SANO's, formed as a mixture of 
the 7t j- and n~-orbitals according to Eqs. (23), have their symmetry-determined 
2-fold degeneracy. For a 2-electron molecule however, after determining the 
correct linear combinations {cf. Eqs. (23)), each o--SANO is paired with a 2-fold 
degenerate =-SANO to give a group of three orbitals with equal occupation 
number, each of the remaining n-SANO's is paired with a a-type SANO giving 
a fourfold degenerate group etc. 

6. Comparison with NO-Calculations for Linear Molecules 

There are quite a number of determinations of NO's of linear molecules 
available in the literature [6-11J. In almost all cases, however, the calculations 
are performed for the tz  § state only. An exception is the work of Rothen- 
berg and Davidson [5J, who determined the NO's of CI-wave functions of the 
H2-molecule for a number of excited states of various symmetry species. It should 
be noted, that for states with H- or A-species, these authors use the density matrix 
P§ § A comparison of the "natural configurations" in their tables I IA - G with 
the results of Sect. 5 of this paper shows that the degeneracies of the numerically 
determined NO's in [5] agree with those obtained from the symmetry considera- 
tions of this paper. In particular, attention is drawn to the fact that for the lowest 
1Hu-state Rothenberg and Davidson find the first three terms of the natural 
expansion of ~+ to be (cf. our Eq. (32b)) 

(l%ln.+ 1n~1%), 

(1a~lng+ 1 ngla.) ,  

(1 '* '* nu lag+laoln~), 

where the orbital 1 n'~ is not orthogonal to 1 n, (compare Figs. 8 and 10 of [5]). 
This result, which has been obtained purely numerically, illustrates the point 
mentioned in Sect. 4 and 5.2 regarding these orbitats. 
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In conclusion the author would like to express his wish, that NO- and SANO- 
calculations for linear molecules with more than two electrons in nontotally- 
symmetric states of which he might not be aware of, could be brought to his 
attention. 
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